From Fedora Project Wiki

< QA‎ | Networking

Revision as of 13:59, 6 October 2015 by Pavlix (talk | contribs) (Created page with "== Dual-stack to dual-stack == {| |IPv4 connectivity||Global or masqueraded |- |IPv6 connectivity||Global |- |Target DNS||Dual-stack |} === What is tested === * Whether IPv...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Dual-stack to dual-stack

IPv4 connectivity Global or masqueraded
IPv6 connectivity Global
Target DNS Dual-stack

What is tested

  • Whether IPv6 is preferred over IPv4.
  • Whether the component is capable of working over IPv6.
  • Whether sequential or parallel DNS resolution is in use.

Test flow

TBD

  1. step
  2. another step

Expected result (sequential, IPv6 preferred)

  • Host requests AAAA record and receives a reply.
  • Host connects via IPv6.
  • No delays, no A query.

Expected result (parallel, IPv6 preferred)

  • Host requests A and AAAA records simultaneously and receives the AAAA reply.
  • Host connects via IPv6.
  • No delays, A reply is ignored if received.

Alternative result (parallel, first result wins, no protocol preference)

  • Host requests A and AAAA records simultaneously and receives the first reply.
  • Host connects via IPv4 or IPv6.
  • No delays.

Dual-stack to dual-stack with lost AAAA answer

Same as above, except that the AAAA answer is lost by a broken DNS server.

IPv4 connectivity Global or masqueraded
IPv6 connectivity Global
Target DNS Lost IPv6

What is tested

  • Wheter the component reverts to IPv4 in reasonable time when AAAA answer gets lost.

Test flow

TBD

  1. step
  2. another step

Expected result (sequential, IPv6 preferred)

  • Host requests AAAA record and gives up after a delay (e.g. 15 seconds).
  • Host requests A record and receives reply.
  • Host connects via IPv4.

Expected result (parallel, IPv6 preferred)

  • Host requests A and AAAA records simultaneously and receives the A reply.
  • Host gives up waiting for AAAA record after a short delay (e.g. 300 milliseconds).
  • Host connects via IPv4.

Alternative result (parallel, first result wins)

  • Host requests A and AAAA records simultaneously and receives the A reply.
  • Host connects via IPv4.
  • No delay.

IPv4 to dual-stack with lost AAAA answer

Same as above, except that the host doesn't have any IPv6 address except link-local and loopback.

IPv4 connectivity Global or masqueraded
IPv6 connectivity Link-local
Target DNS Lost IPv6

What is tested

  • Wheter the component suppresses AAAA queries when lacking global IPv6 connectivity.

Test flow

TBD

  1. step
  2. another step

Expected result

  • Host requests A record and receives reply.
  • Host connects via IPv4.
  • No delay, no AAAA query.

Dual-stack to dual-stack with lost communication

IPv4 connectivity Global or masqueraded
IPv6 connectivity Global but packets to destination get dropped
Target DNS Dual-stack, DNS server accessed via IPv4

What is tested

  • Whether the component reverts to IPv4 in reasonable time when local or remote network drops all IPv6 communication.

Test flow

TBD

  1. step
  2. another step

Expected result (sequential, IPv6 preferred)

  • Host requests AAAA record and receives reply.
  • Host attempts connecting to IPv6 and times out.
  • Host requests A record and receives reply.
  • Host connects via IPv4

Expected result (parallel DNS, IPv6 preferred)

  • Host requests A and AAAA records simultaneously and waits for AAAA reply.
  • Host attempts connecting to IPv6 and times out, receiving A reply in the meantime.
  • Host connects via IPv4.

Expected result (parallel DNS, parallel TCP, IPv6 preferred)

  • Host requests A and AAAA records simultaneously
  • Host attempts IPv4 and IPv6 connections upon receiving the respective records
  • IPv4 connection is established
  • IPv6 connection is given up after a short delay (e.g. 300 milliseconds)
  • IPv4 connection is used